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Abstract. Current models of human motor learning and control typically employ continu-

ous (or near continuous) movement commands and sensory information. However, research

suggests that voluntary motor commands are issued in discrete-time submovements. There

is also reasonable support for the hypothesis that human sensory experience is episodic

as well. These facts have motivated the development of a learning model thatemploys

discrete-time sensory and motor control events. We present this model together with the

results of initial simulation of robot control. The results show that the learningthat takes

place is adaptive and is robust to a variety of conditions that many traditionalcontrollers

are not capable of handling, including random errors in the actuators and sensors, random

transmission time delays, hard nonlinearities, time varying system behavior, and unknown

structure of system dynamics.
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1. Introduction

When mathematically modeling human motor learning and control, it is common to make a

number of assumptions. Sensory information and control information are usually considered to

be continuous in time. Perception and movements are often expressed in terms of world coor-

dinates. In many cases, velocity, acceleration, and higherderivatives of position are explicitly

represented in the motion planner. And finally, kinematic states are assumed to be sensed at

high resolution. While models based on these assumptions candescribe some aspects of human

movement, none of these assumptions has been proven. In addition, these models are typi-

cally used only to model and predict a limited class of movement (e.g., reaching movements).

In this paper, we propose an alternative motor learning model. This model employs as work-

ing assumptions that both motor commands and sensory information are passed in an episodic

fashion, quantized in time.

Evidence for discrete time motor commands, also known as submovements, is widespread

and accounts for a large number of disparate phenomena in motor behavior. Observations

of slow finger movements (Vallbo & Wessberg, 1993), eye saccades (Collewijn et al., 1988),

tracing constant curvature paths (Abend et al., 1982), cyclical movements (Woodworth, 1899;

Crossman & Goodeve, 1983; Doeringer, 1999), infant reachingmovements (Hofsten, 1991),

ballistic movements (Morasso & Mussa-Ivaldi, 1982), movements of recovering stroke pa-

tients (Krebs et al., 1999; Rohrer et al., 2004), and movements requiring high accuracy (Milner,

1992) are all consistent with a theory of submovements. The discrete-time nature of movement

is evident not only in movement kinematics, but also in the electromyograph (EMG) signals of

agonist and antagonist muscles (Vallbo & Wessberg, 1993).

2



Evidence for the discrete nature of sensory experiences is more subtle. The concept was

originally proposed by William James (1890) and more recently in Stroud (1956). A number

of experiments support a theory of discrete sensory experiences. A striking phenomenon that

suggests discrete sensory experience is the wagon wheel illusion under steady light. Due to

the rapid series of photographs of which movies are composed, it is commonly observed that a

spoked wagon wheel appears to rotate slowly backward while rolling rapidly forward. Interest-

ingly, the same effect can also be observed under steady light (Purves et al., 1996), suggesting a

periodic sampling mechanism in human vision. In another experiment, two lights that blinked

with a slight delay were occasionally perceived to flash simultaneously (Wertheimer, 1912),

an occurrence that was suggested to be a function of the phaserelationship with alpha (8–12

Hz) cortical rhythms (Gho & Varela, 1988). Other observations that suggest discrete sensory

experiences are the sharp dependence of perceived causality on delay times and periodicities

in reaction times (VanRullen & Koch, 2003). A more in-depth review of the case for discrete

perception is made in Koch (2004).

2. An event based motor learning agent

Because motor commands and sensory signals in the models occur at discrete intervals, they can

also be termed motor and sensory “events,” and any model employing them can be described

as “event-based.” For the sake of implementation, we developed an instance of an event-based

learning agent in which several additional limitations areimposed. (1) Motor commands and

sensory information are not only quantized in time, but are also coarsely discretized in magni-

tude. (2) Motor and sensory events of different magnitudes are considered categorically unre-

lated. That is, extrapolation and interpolation do not occur explicitly. (3) Motor and sensory
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events are serially registered in the motor learning agent.

Learning occurs by repeated observation of sensory and control events. The block dia-

gram in figure 1 describes the process in detail. During learning (as in an infant), the motor

control system issues random commands and observes the resulting sensory events. As pat-

terns are observed repeatedly, they are recorded and extended. This growing library of patterns

constitutes the motor controller’s “experience base.”

3. Simulation

Consider an implementation of the learning model outlined above in a simulated rotary pointer

robot. Possible sensory events for the pointer robot consist of position sensing in 10◦ bins,

resulting in 36 distinct states (for convenience, numbered1 through36). Possible command

events for the pointer are 10◦ rotation clockwise (R) and and 10◦ rotation counterclockwise (L).

An example of how the learning model operates shows the simplicity of the approach.

One sample excerpt of an event history resulting from randommovements might consist of

3R4R5L4R5L4L3L2. The learning agent would break the event history into shortpatterns,

3R4, 4R5, 5L4, etc. When these patterns are encountered again in subsequent excerpts of the

event history, they will be extended, producing patterns such as3R4R5, 4R5L4, 5L4R5R6.

A simulation of the learning agent using the pointer robot system was implemented in

C++. Six conditions were simulated:

Simple system. Measurement states1–36 and command eventsR andL as described previ-

ously.

Hard stop. Same as the simple system, but with a “hard stop” inserted at 0◦, prohibiting con-
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tinuous rotational movement.

Sensory state scramble. Same as the simple system, but after 5000 trials, the numerical labels

for sensory states are renamed1–36 in random order, making all prior learning inappli-

cable and misleading.

Command reversal. Same as the simple system, but after 5000 trials the commands“reverse”;

anR command producescounterclockwise motion and anL command producesclockwise

motion.

Random error. Same as the simple system, but with up to 5◦ of random error added to each

command event, resulting in movements of between 5◦ and 15◦. With measurement res-

olution limited to 10◦, the error will express itself as measurement states being either

skipped or unchanged when a command is issued.

Random delays. Same as the simple system, but each command event has a 50% chance of

being delayed and executed at the instant thenext command is issued. As a result, when

a command is issued, zero, one, or two command events may actually take place.

In each case, the learning agent generated random command events and attempted to pre-

dict the results before executing the command. Predictionswere generated by searching through

previously observed patterns for instances containing a portion of the current event history. Pat-

terns that matched a longer portion of the event history werefavored heavily. Patterns that were

observed recently or that had been observed many times were also favored. Once a pattern was

selected a prediction was obtained by reading “what happened next” when the situation had

been encountered previously. In each condition, the learning agent began with a clean slate;

5



that is, there were no previously observed experiences uponwhich to build. As a result, lack

of prior experience made it impossible for the agent to offera prediction in some cases. These

were counted as unsuccessful predictions.

4. Results

During simulation of each of the six conditions, the learning agent generated a database of

patterns. Typical patterns observed were16 R 17 R 18 R 17 L 18 R 19 (observed 6 times),

25 R 26 R 27 L 26 L 25 R 26 (observed 8 times), and22 R 23 L 22 R 23 L 22 L 21

(observed 11 times). In the case of the simple system, a totalof 2155 repeated patterns were

observed, occupying 599 kilobytes of memory. The longest patterns observed included five

movement events, a limit imposed by the software, rather than by the inherent function of the

learning agent. On average, patterns contained between 3 and 4 movement events. Simulating

10,000 trials for one condition took approximately two minutes. Given that the simple system

was learned within the first 2000 trials, only 24 seconds wererequired to learn the system’s

dynamics completely.

The results of the simulations are shown in figure 2. As shown in the plot, the learning

agent achieved 100% accuracy in the simple system after 2000trials. The learning agent showed

similar performance in the presence of a hard stop. In both these conditions, the performance

of the system is deterministic, allowing correct predictions at every time step.

Scrambling the sensory state labels changed the system fundamentally, making the prob-

ability of encountering a previously observed pattern small. Learning essentially began from

scratch, and the initial learning transient was repeated after scrambling. Reversing the direc-

tions of the commands resulted in a marked decrease in performance initially, but the agent
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recovered within 4000 trials after that and predicted the last 1000 trials perfectly.

The introduction of random noise into the movement amplitude made perfect prediction

impossible. The noise amplitude exactly corresponded to the resolution of the position mea-

surement, 10◦. As a result, knowledge of the current position allowed prediction the subsequent

position with an accuracy of only 50%. With a longer event history, it was possible to increase

the accuracy, but only to a certain extent. The learning agent began with a prediction accuracy

slightly higher than 50%, and gradually it increased to near70%.

Random time delays introduced the possibility that zero, one, or two command events

might be executed at once. With a 50% probability of delay, atany given time step there was a

25% chance that no command would be executed, a 25% chance that two commands would be

executed simultaneously, a 25% chance that the previous command alone would be executed,

and only a 25% chance that the current command alone would be executed. As a result, even

once the behavior of this simple system is learned, only a 25%success rate can be expected

with no knowledge of prior events. However, with a complete knowledge of prior events, it was

possible to infer whether the prior command event had been executed, allowing a prediction

accuracy of 50%. The learning agent began with prediction accuracy slightly higher than 25%,

and that accuracy climbed to just over 45% after 10,000 trials.

5. Discussion

The computational requirements of the learning agent were modest. Although the system sim-

ulated was simple, the time required to learn its dynamics fully was less than 30 seconds and

data storage requirements were almost negligible (¡1MB). However, we anticipate that both the

learning time and the storage requirements will increase exponentially with the number of pos-
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sible sensory and command events. Extending the learning agent to more complicated systems

may require strategies to limit the number of possible events, or to introduce new sensory and

motor events gradually.

It is worth noting that the prediction tasks demonstrated here are nontrivial. The five

conditions contained instances of hard nonlinearities, dramatic time variance, large stochastic

movement error, and nondeterministic time delays, any one of which can impose insurmount-

able challenges for certain learning algorithms. However,they are challenges that the human

motor learning mechanism routinely faces and successfullyovercomes without difficulty. Taken

together, they constitute something of a proving ground forany model of motor learning pur-

porting to describe that of a human.
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Wertheimer, M. (1912). Experimentelle studienüber das sehen von bewegung.Z. Psychologie, 61,
161-265.

Woodworth, R. S. (1899). The accuracy of voluntary movement.Psychology Review Monogr Suppl.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under contract DE-AC04-94AL85000.

9



Observe current state

Record pattern

Has 

pattern been 

encountered 

before?

Increment count

for pattern

Yes

No

Generate random

command input

Observe resulting 

state

Extend pattern

with additional

events

Begin new pattern observation

Figure 1. Learning agent operation. The learning agent identifies its dynamics and those of its environment by

randomly generating patterns and noting repeated occurrences. It initially observes its current state, generates

a random input, and then observes the resulting state. If it is a pattern that it has not encountered before,

it records the pattern in memory and repeats the process. If the pattern has been previously observed, the

agent notes the observation and then extends the pattern by generating another random input. In this way,

patterns of increasing length are recorded as training progresses.
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Figure 2. Simulation performance. Six different conditions were imposed: the simple system (bold solid line),

the system with a hard stop (dotted line), the system with scrambled sensory state labels (fine solid line),

the system with a command reversal after 5000 trials (fine dotted line), the system with randomness in the

movement amplitude (dashed line), and the system with a random time delay (dash-dot line).
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